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Abstract—This work introduces EffiSegNet, a novel segmenta-
tion framework leveraging transfer learning with a pre-trained
Convolutional Neural Network (CNN) classifier as its backbone.
Deviating from traditional architectures with a symmetric U-
shape, EffiSegNet simplifies the decoder and utilizes full-scale
feature fusion to minimize computational cost and the number
of parameters. We evaluated our model on the gastrointestinal
polyp segmentation task using the publicly available Kvasir-
SEG dataset, achieving state-of-the-art results. Specifically, the
EffiSegNet-B4 network variant achieved an F1 score of 0.9552,
mean Dice (mDice) 0.9483, mean Intersection over Union (mIoU)
0.9056, Precision 0.9679, and Recall 0.9429 with a pre-trained
backbone – to the best of our knowledge, the highest reported
scores in the literature for this dataset. Additional training from
scratch also demonstrated exceptional performance compared to
previous work, achieving an F1 score of 0.9286, mDice 0.9207,
mIoU 0.8668, Precision 0.9311 and Recall 0.9262. These results
underscore the importance of a well-designed encoder in image
segmentation networks and the effectiveness of transfer learning
approaches.

Index Terms—medical images, colonoscopy, endoscopy, polyp
segmentation, semantic segmentation, convolutional neural net-
works, transfer learning, efficientnet

I. INTRODUCTION

Colorectal Cancer (CRC) is one of the most prevalent
cancers in Europe, accounting for 12.9% of all new cancer
diagnoses and 12.4% of deaths in 2022 [1]. Colonoscopy is

Funded by the European Union (DIOPTRA, 101096649). Views and
opinions expressed are, however, those of the author(s) only and do not
necessarily reflect those of the European Union or the Health and Digital
Executive Agency. Neither the European Union nor the granting authority can
be held responsible for them. This work has received funding from the Swiss
State Secretariat for Education, Research and Innovation (SERI). Funded by
UK Research and Innovation (UKRI) under the UK government’s Horizon
Europe funding guarantee [grant number 10056682].

the current gold standard in the early detection and diagnosis
of colorectal abnormalities, particularly in the identification of
colon polyps, a potential precursor to CRC [2]. As medical
imaging technologies advance, there is a growing demand
for accurate and efficient tools to assist clinicians in polyp
detection, as miss rates with the current manual approach are
estimated between 14-30% depending on the polyp type and
size [2].

In recent years, deep learning approaches have demonstrated
remarkable success in various medical image analysis tasks,
leveraging large datasets and pre-trained models to achieve
state-of-the-art results. Transfer learning, in particular, has
emerged as a promising technique to address the data scarcity
issue, allowing models trained on external datasets to adapt
and excel in specific medical imaging domains [3].

Despite the effectiveness of transfer learning, the predom-
inant methodologies employed for colon polyp segmentation,
as exemplified by widely-used networks like U-Net [4], Re-
sUNet [5], and ResUNet++ [2], often opt for training from
scratch on the task-specific dataset. Notable exceptions, mainly
involving transformer networks, still fall short when compared
to the current best performing network, DUCK-Net, a Con-
volutional Neural Network (CNN) trained from scratch [6].
This paradox is the main motivation behind revisiting transfer
learning techniques for segmentation networks. Current ap-
proaches usually employ symmetric U-shaped networks, with
the encoder consisting of a pre-trained CNN classifier, and
the decoder a symmetric stack of convolutional layers with
randomly initialized weights, that refine concatenated feature
maps from previous layers [7]–[10].

Recently, Lu et al. [11] demonstrated that the divide-and-
conquer strategy in the encoder of the U-Net is the main



contributor to its effectiveness. In their work, they designed
Half-UNet, a segmentation network that does not have the
typical symmetric U-shape. Instead, their network is simplified
by utilizing full-scale fusion of the encoder’s outputs, and
refinement using two Ghost modules. This design achieved
superior segmentation efficiency in terms of computational
cost while maintaining comparable accuracy.

Driven by these considerations, we propose a novel net-
work architecture named EffiSegNet, which deviates from
previous transfer learning approaches by utilizing the Ef-
ficientNet family of CNNs [12] as the encoder, and dis-
carding the symmetric U-shape for a simplified decoder
that keeps the number of added parameters and complex-
ity to a minimum. We demonstrate EffiSegNet’s effective-
ness on Kvasir-SEG, a gastrointestinal polyp segmentation
dataset, where its performance surpasses current state-of-the-
art models. To ensure the reproducibility of our research,
our code and dataset splits are publicly available on Zenodo
(https://doi.org/10.5281/zenodo.10601024).

II. NETWORK ARCHITECTURE

Inspired by Half-UNet’s simplified U-Net architecture, we
utilized the EfficientNet family of CNN classifiers [12] as
the backbone to create several variants of a new network
architecture which we named EffiSegNet. The core of the
network is comprised of an EfficientNet CNN pre-trained
on the ImageNet classification dataset. The overall network’s
architecture has been intentionally designed to minimize the
amount of non pre-trained parameters, thereby reducing the
corresponding computational overhead and the number of
randomly initialized weights. Using EfficientNet as the en-
coder of the network, the final feature maps produced before
each downsampling step are extracted. In a typical U-Net
architecture, these feature maps are upsampled, concatenated
with the features of the previous stage along the channel
dimension, and then refined using consecutive convolutional
layers:

x̃s = Fs(concat(xs, up(xs+1))). (1)

In this context, the stage s refers to a distinct level in the
network where the spatial dimensions of the feature maps
(i.e. their height H and width W ) are reduced by a factor
of 2. Therefore, xs denotes the output feature maps of the
stage s, and xs+1 the output of the subsequent stage with the
spatial dimensions halved. Fs(·) is the stack of convolutional
layers that refine the fused features, up(·) is the upsampling
operation that doubles the spatial size, and concat(·, ·) is the
concatenation operation between two stacks of feature maps.

The feature fusion method described in Eq. 1, although
effective, results in memory and computational overhead,
which previous work has avoided by performing element-wise
addition instead [11], [13]. However, for the addition operation
to be peformed, the feature maps need to match across all
dimensions (height, width, number of channels). To this end,
we employ first a simple convolutional layer, followed by
batch normalization, and upsampling using nearest-neighbor

interpolation, in order to equalize the dimensions across all
stages. The optimal number of channels was heuristically
found to be 32. We opted to perform the convolution operation
before the upsampling due to the reduced computational
complexity. This operation is defined as:

x̃s =

n∑
s=1

up(Fs(xs)) + F0(x0), (2)

where n is the network depth (equal to 5 for EfficientNets),
Fs(·) is the simple convolutional layer that outputs 32 feature
maps, followed by batch normalization, and up(·) is the
upsampling operation that increases the spatial dimensions to
those of the original input’s size, instead of doubling them.

Following feature fusion across all stages, two Ghost mod-
ules [14] are utilized, a strategy similarly employed in [11].
These modules effectively generate more feature maps us-
ing a limited number of parameters and operations, thereby
contributing to the reduction of non pre-trained parameters.
The final layer involves a simple 1×1 convolution, followed
by a sigmoid activation function which produces the final
output. The network’s architecture, illustrated in Fig. 1, can be
easily and efficiently scaled up or down in terms of its depth,
width, and resolution, by utilizing EfficientNet’s compound
scaling technique [12]. Following a similar naming scheme
to the original EfficientNet implementation, we named each
scaled version of our network as “EffiSegNet-BN”, where N
corresponds to the EfficientNet variant used as the backbone.
Table I depicts the number of pre-trained and randomly
initialized parameters for each network variant.

Upsample to original size HxW

Element-wise Addition

Ghost Module

3x3 2DConv to 32 channels

Resolution

Channels

1x1 2DConv to HxWx1 

Input

EfficientNet Modules

Fig. 1. The EffiSegNet architecture. A pre-trained EfficientNet model serves
as the backbone of the network, scaling it up and down using compound
scaling.



TABLE I
NUMBER OF PRE-TRAINED AND RANDOMLY INITIALIZED PARAMETERS

Network Pre-trained Randomly Random to
Variant Params Init. Params Pre-trained Ratio

EffiSegNet-B0 4.0M 0.15M 3.8%
EffiSegNet-B1 6.5M 0.15M 2.3%
EffiSegNet-B2 7.7M 0.16M 2.1%
EffiSegNet-B3 10.7M 0.18M 1.7%
EffiSegNet-B4 17.5M 0.21M 1.2%
EffiSegNet-B5 28.3M 0.24M 0.8%
EffiSegNet-B6 40.7M 0.27M 0.7%
EffiSegNet-B7 63.8M 0.3M 0.5%

III. EXPERIMENTAL SETUP

We tested the EffiSegNet variants on Kvasir-SEG [5], an
open-access segmentation dataset containing 1000 endoscopic
images of gastrointestinal polyps and their corresponding
ground truth delineations. To ensure an equal comparison
with current state-of-the-art, we used the 80:10:10 split into
training, validation, and testing subsets provided by Dumitru
et al. (2023) [6]. To the best of our knowledge, their approach
using the DUCK-Net architecture is, until now, the best
performing approach on this particular dataset.

We trained all EffiSegNet variants using a batch size of
8 for 300 epochs. In cases where the available memory was
insufficient, the maximum possible batch size was determined
by performing a binary search. The Adam optimizer with
decoupled weight decay regularization was used [15], with
an initial learning rate of 10−4. This was gradually reduced
to 10−5 over the course of training using cosine annealing of
the learning rate. The loss function used was the average of
the Dice and Cross Entropy loss.

The spatial resolution of the original input images varied
between 332×487 to 1920×1072 pixels. These images were
resized using Lanczos interpolation to the spatial dimen-
sions on which each particular EfficientNet variant was pre-
trained on. This is 224×224 for EfficentNetB0, 240×240 for
EfficientNetB1, 260×260 for EfficientNetB2, 300×300 for
EfficientNetB3, 380×380 for EfficientNetB4, 456×456 for Ef-
ficientNetB5, 528×528 for EfficientNetB6, and 600×600 for
EfficientNetB7. Previous work has suggested that pre-trained
EfficientNets work best on images with similar dimensions to
those they were pre-trained on [16], therefore, we did not opt
to resize to alternative dimensions.

We followed the augmentation techniques used in [6], with
the addition of elastic deformation. More specifically, during
training we applied:

• Random horizontal and vertical flip.
• Color jitter with the brightness chosen randomly between

0.6 and 1.6, a contrast factor of 0.2, saturation factor 0.1
and hue factor 0.01.

• Affine transformation with scale value uniformly sampled
between 0.5 and 1.5, translation up to 12.5% of the
image height and width, and rotation between -90 and
90 degrees.

• Elastic deformation with the Gaussian filter sigma set to
50, alpha value of 1, and Lanczos interpolation.

Finally, all images were normalized using the channel mean
and standard deviation of ImageNet: [0.485, 0.456, 0.406] and
[0.229, 0.224, 0.225] for each of RGB channels, respectively.

IV. RESULTS

Table II depicts the results as measured for the test subset.
We have computed the F1 Score, mean Dice, mean Intersec-
tion over Union (IoU), Precision and Recall for all our network
variants. However, not all of the metrics were reported in all
works (n/a – not available flag).

TABLE II
SEGMENTATION RESULTS ON THE KVASIR-SEG DATASET.

Model F1 Sc. mDice mIoU Precision Recall
U-Net† [4] 0.8655 n/a 0.7629 0.8593 0.8718

ResUNet [5] 0.7878 n/a 0.7778 n/a n/a
ResUNet++ [2] 0.8133 n/a 0.7927 0.7064 0.8774
Li-SegPNet* [9] 0.9058 n/a 0.8800 0.9424 0.9254
PraNet*† [17] 0.9094 n/a 0.8339 0.9599 0.8640

ColonFormer* [18] n/a 0.927 0.877 n/a n/a
DUCK-Net [6] 0.9502 n/a 0.9051 0.9628 0.9379
EffiSegNet-B0* 0.9421 0.9304 0.8794 0.9475 0.9368
EffiSegNet-B1* 0.9448 0.9288 0.8784 0.9437 0.9461
EffiSegNet-B2* 0.9464 0.9329 0.8836 0.9550 0.9380
EffiSegNet-B3* 0.9465 0.9358 0.8876 0.9613 0.9321
EffiSegNet-B4* 0.9552 0.9483 0.9056 0.9679 0.9429
EffiSegNet-B5* 0.9513 0.9488 0.9065 0.9713 0.9321
EffiSegNet-B6* 0.9531 0.9477 0.9060 0.9724 0.9334
EffiSegNet-B7* 0.8289 0.7629 0.7073 0.8957 0.7713

∗ Model was pre-trained on an external dataset.
† Evaluation scores from [6].

V. TRAINING FROM SCRATCH

We conducted a separate experiment with EffiSegNet-B4,
the best performing network variant in terms of the F1 score,
and re-trained it with randomly initialized weights to deter-
mine the pre-training’s effect on the network’s performance.
The results of this experiment are reported in Table III.

TABLE III
COMPARISON OF PRE-TRAINED AND RANDOMLY INITIALIZED NETWORK

PERFORMANCE

Model F1 Score mDice mIoU Precision Recall
EffiSegNet-B4* 0.9552 0.9483 0.9056 0.9679 0.9429
EffiSegNet-B4 0.9286 0.9207 0.8668 0.9311 0.9262
∗ Model was pre-trained on an external dataset.

VI. DISCUSSION

The effectiveness of transfer learning in improving medical
image analysis on limited data has been consistently demon-
strated in previous studies [3], [19]. Yet, the predominant
and baseline networks trained on the Kvasir-SEG dataset did
not utilize pre-training on any external datasets [2], [4]–[6].
Even exceptions to this practice, mainly involving transformer



networks, still fall short in performance compared to DUCK-
Net, a CNN trained from scratch [6].

In this work, we proposed a novel segmentation network,
EffiSegNet, incorporating a pre-trained classifier backbone and
a minimal number of parameters added on top to transition
into pixel-level classification. This approach stems from the
observation that the encoder’s divide-and-conquer strategy
outweighs the decoder’s feature fusion significance, thereby
meaning that a symmetric U-shaped network is not necessarily
optimal [11].

Our results demonstrate that a pre-trained CNN is hard
to beat. Specifically, our “EffiSegNet” architecture achieved
state-of-the-art results on the Kvasir-SEG dataset, with
larger network variants, namely EffiSegNet-B4, EffiSegNet-
B5, and EffiSegNet-B6, outperforming the current state-of-
the-art DUCK-Net in terms of the F1 score, mean IoU,
and Precision. However, the largest variant, EffiSegNet-B7,
was found to be an exception as the overly large amount
of parameters, detailed in Table I, led to overfitting on the
training data. This highlights the need for careful consideration
of model complexity when training on limited datasets.

Training EffiSegNet-B4 without any pre-training resulted in
inferior results when compared to its pre-trained counterpart
(F1 Score of 0.9286 vs 0.9552), but still among the highest
performing networks in the literature. This further supports
that a well designed encoder is much more important than the
decoder, and features from the various stages can be effectively
used for pixel-level classification with cheap operations and
few trainable parameters.

Future research could investigate the impact of each stage’s
features on the final segmentation accuracy, and explore spe-
cialized blocks that better capture features at each scale. More-
over, given that the EffiSegNet architecture can incorporate any
CNN classifier as its backbone, experimentation with different
backbone models could offer new insights.

VII. CONCLUSION

This study introduces EffiSegNet, a novel approach to gas-
trointestinal polyp segmentation on endoscopy images lever-
aging transfer learning and the EfficientNet family of CNNs
as the model’s backbone. Our findings on the Kvasir-SEG
dataset demonstrate superior performance compared to exist-
ing methods, highlighting the effectiveness of incorporating
pre-trained networks in the model’s architecture. The high
performance achieved with and without pre-training further
underscores the significance of prioritizing encoder design
over decoder complexity. EffiSegNet also provides a versatile
framework for integrating any CNN classifier, opening avenues
for future investigation into the impact of different backbone
designs. As demonstrated by our results, in the evolving field
of medical image analysis, EffiSegNet can prove a useful tool
for enhancing colorectal cancer screening and advancing the
application of machine learning in healthcare.
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